The Role of Private Universities in Building Knowledge Society: A Case Study of Private Universities in United Arab Emirates

Maysoon Alkaisi

MENA College of Management, Dubai- The United Arab Emirates

Received: 29 April 2018 Accepted: 22 May 2018

Abstract: This study examines the role of private universities in building knowledge society in UAE using quantitative approach. We distributed 30 questionnaires to three selected private universities. We found that the association between creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing are positively strengthened sustainability of higher education to build knowledge community in UAE. The creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing are significant variables in explaining building knowledge community in UAE due to their positive interconnectivity. We suggest that education sector managers should extend the quality enhancement scope to student satisfaction because satisfaction of student is highly essential in sustaining private universities to compete within and outside the system since part of the objectives of knowledge economy is to provide a quality educational services that will arrest the attention of students residing in UAE and abroad. HEIs should improve overall service for a long-term revenue generation. To meet the international standards of education, special attention is required to upgrade infrastructure and other allied facilities, as well as to improve the communication skills of the students, to establish efficient quality enhancement cells and job placement cells, and to arrange industrial visits and study tours to enhance practical skills of the students.

Keynotes: Higher Education, Sustainability and Knowledge community.

1.0 INTRODUCTION

Tertiary education exercises a positive interconnectivity on economic growth of a nation (Zsóka, Szerényi, Széchy & Kocsis, 2013) which contribute to development of human capital on a countries to compete favourably with the global economy. The support of the knowledge-driven economic growth strategies and poverty reduction can be achieved through good Tertiary education institutions. The higher educational institution is known to as the industry of knowledge facts and innovations. It gives training for a qualified and adaptable labor force for the sectors of the country (b) creating new knowledge (innovation); and (c) building the capacity to access existing stores of global knowledge. Tertiary education
Institutions are inimitable in their ability to incorporate and create support among these three dimensions in building knowledge economy (Campbell & Rozsnyai, 2002; Halder and Chandra, 2012; Dumbu, 2014; Pan, 2014; Essiadonkoh, Amihere and Addison, 2015; Vahdany, and Gerivani, 2016).

Additionally, tertiary education is more than the capstone of the traditional education pyramid; it is a critical pillar of human development worldwide. The United Arab Emirates (UAE) is one of the few countries where different levels of government have supported national programs to create greater awareness about the strategic importance of Knowledge management and knowledge sharing in country's social and economic development (Muhammad Siddique, 2012).

One of the significant initiatives was the establishment of a number of free zones (e.g. Knowledge Village, Academic City, Media City, and Internet City) to attract foreign universities and training institutes, media firms, and ICT and software development companies to serve the growing needs of the business community. The Emirate of Dubai established “Knowledge and Human Development Authority” (KHDA), to act as a quality assurance authority to monitor the development of education and human resource sectors as part of the quest to build knowledge economy in the country.

Evidently, Arabian Business news 11th April (2017) hinted that higher education's "greatest challenge" is meeting UAE business needs. Universities need to move towards a model of teaching students to have skills that these machines don’t have and that means adapting to the situation around them. Universities must become highly innovative and focus on a trajectory of change, whereby someone doesn’t just study engineering, for example, but also a multitude of subjects and skills to prepare them for the workplace and life-long education. As the UAE moves away from oil reliant business, they highlight that the role higher education will play in that success will be essential in supporting the government and society to achieve knowledge economy. Additionally, with reference to the current global higher education policy where most of the developed and emerging economies are using educational sector as alternative source of revenue for the national development. The developed countries such as UK, United States of America, Germany, Australia and other developed countries are in the forefront of knowledge management quest. Furthermore, the secret behind the success of Asian Tigers is as result of building knowledge society. This is a signal to UAE policy maker to support higher institutions in the country by providing necessary infrastructures to achieve national goal. Also, the current crises in the world oil as torching the volatility in the price of oil market which is not satisfactory. The investment in human capacity would save the nation from this global problem. This study highlights the importance of knowledge economy and aim to investigating the role of private universities in building the knowledge society in UAE.

1.2 Knowledge and Society

The tertiary education sector is essential in storing and maintaining knowledge stocks. Therefore, knowledge creation is imperative for every society and must be maintained. Knowledge economies can be stimulated and propelled by creativity in the society. Higher institutions must ensure qualities education in Knowledge society for residents not be left behind their counterpart in the world. According to Joseph Schumpeter, capitalist economist view that knowledge economy is like a force of creative destruction. He hinted that knowledge economy has direct connectivity with economic growth and prosperity of the nation. Any economy needs to build human capital to increase productivity which can be achieve via good education, skills and training to support and increase its knowledge base.
Evident from Japan and Singapore being the only countries that moved straight from low income economy to high income economy by the development of knowledge economy via increase in the number of doctoral graduates in their countries. It is highly imperative for UAE to learn from these nations and promote knowledge economies given the declining in price of crude oil in the world. UAE government should think of diversifying economy to educational sector given the economic recession in most of oil producing countries.

The knowledge society needs diversity in higher education systems” (Altbach, Reisberg & Rumbley, 2009; Wijayanto and Sumarwan, 2016; Vahdany and Gerivani, 2016; Jayakumar, 2016; Verma, Stoffova and Zoltán, 2018; Kweca and Ndibalema, 2018; Owagbemi, 2018; Masciantonio and Berger, 2018), “when a number of institutions will have a wide range of powers and deal with different types of students”. The focus should be made on both institutions’ infrastructure and students’ success” (Lynch, 2003) A special humanistic task of modern education is to create mentally comfortable cognitive conditions for different cognitive personality types in their related socio-cultural environment (Karpov, 2015).

1.3 The UAE and Knowledge community Building

The UEA Higher Education Institutes play a significant role in the development of the nation’s workforce and the economy in recent year as quality education top priority of the government. In its 2021 Vision, the United Arab Emirates (UAE) government prioritizes the development of a “knowledge economy” to replace its current oil-driven one. National human capital must be fostered in order to fuel this transformation, and developing human capital involves building the skills and knowledge that drive cutting-edge entrepreneurship and innovation (Schiliro, 2013). Therefore, the Vision highlights the need to develop a new generation of creative and critical thinkers. Meanwhile, most of the reforms and initiatives in the UAE today are done with the underlying theme of building the Knowledge Society. Two important documents have given impetus to this direction: the Arab Knowledge Report of 2009 and that of 2010/2011. The Arab Knowledge Report 2009, Towards Productive Intercommunication for knowledge, showcased the deficits and gaps in the Arab scene and proposed ways to address these gaps (Lightfoot, 2014). The report has identified the demand for a comprehensive perspective on the knowledge society and also sketched the essential requirements for integration with the knowledge society, namely, human and material resources, working tools, and horizons of which to aspire. Preparing Future Generations for the Knowledge Society sheds light on one of the most important recommendations of the previous Report by addressing the issue of preparing future generations for the knowledge society which is considered the cornerstone for building a sustainable human development. The Report provides practical solutions that can guide Arab countries in bridging the” cognitive gap” that was highlighted in the first report. The report focused on education as the core of reform in any society that aspires to acquire knowledge.

Although, UAE faces many challenges in its bid to build a knowledge society (Hosseinioun, 2018). It certainly requires government leadership and funding to overcome such challenges, but it cannot be done by the government on its own. The private sector and academic circles must also work together to turn the national vision into reality. When people find an environment that supports their desires to achieve and advance, they will do extremely well and reach heights previously thought to exist only in the imagination. Moreover, research on the effectiveness of building a knowledge
society in improving a strategy to address the country's demographic lopsidedness in a way that strikes a balance between comprehensive development and interests of the homeland is badly needed.

In conclusion, the targeted knowledge society in the UAE relies on the quality of human capital, education, research and innovation plans as a means to advance its development. If the UAE wants to achieve its goals in building a knowledge society, there is need to invest more on human capital due to the important role it plays in the knowledge-based economy. In light of this, the study aims at investigating the role of private universities in building the knowledge society in UAE.

2.0 LITERATURES

2.1 Quality Service in Higher Education

The concept of quality has evolved from “excellence” to “value”, to “conformance to specification” and to “meeting and exceeding customer expectations” (Ijaz, Irfan, Shahbaz, Awan & Sabir, 2011). The first two definitions of quality are quite similar in that they both have common views on assessing and measuring the quality of both products and services, whereas the third is more appropriate for assessing only the quality of products (Ijaz, Irfan, Shahbaz, Awan, & Sabir, 2011).

Service quality may be conceptualized as customers or consumers overall feeling about the superiority or inferiority of the services they received from the service provider (Munusamy, Chelliah, & Mun, 2010). The most commonly referred to definition of service quality is the difference between customer expectations of what a customer will receive from a service provider and the perceptions about the services received by customer from the service provider. Quality, performance and satisfaction are considered to be the key factors and these factors are interrelated in a causal relationship or some time these three factors are used as synonymously due to the similarity in meaning (Sureshchandar, Rajendran & Anantharaman, 2002; Giovanis, & Athanasopoulou, 2018). Still there is no precise definition of service quality from an educational point of view. However, according to O’Neill and Palmer (2004, p: 42), service quality in education can be defined as “the difference between what a student expects to receive and his/her perceptions of actual delivery” (cited in Ijaz, Irfan, Shahbaz, Awan, Sabir, 2011).

Parasuraman et al. (1988) suggest that ‘SERVQUAL’, which measures service quality, is based on five aspects, these are tangibles, reliability, responsiveness, assurance, and empathy (Andam et al., 2015). It is essential to take all aspects of service quality in consideration that justify the situation in which specific industry is working (Lagrosen, & Lagrosen, 2007). Among famous literatures that established interconnection between service quality and success of higher educational institutions are (Quinn, Lemay, Larsen, & Johnson, 2009; Khodayari, & Khodayari, 2011; Sultan, & Yin Wong, 2013; Sharabi, 2013; de Jager, & Gbadamosi, 2013; Noaman, Ragab, Madbouly, Khedra, & Fayoumi, 2017; Hamari, Hanner, & Koivisto, 2017).

2.2 Sustainable Development in Universities

Sustainable development (SD) first became widely known in the World Conservation Strategy (1980). It is development to meet the desires of the present students without affecting the future generations to meet their own needs. It is the development that made none of generation better off without making none worst off. Sustainable development in the universities is now a global concern for policy makers with respect to social status and the impact of environmental on universities operations (Kates, Parris, & Leiserowitz, 2005; Waas, Verbruggen, & Wright, 2010).
The importance of SD in universities has been identified by many studies. It is found in the study of Waas, Verbruggen, and Wright (2010) that Higher education institutions are essential fragments of the larger society economy, and physical landscape. Also, Loorbach (2010) hints that sustainable development is not only the duty of governmental, but that society and all institutions should per take in the quest to achieve this goal.

Similarly, Staub (2017) identifies that “Institutions of Higher Education (IHE) across the world need to expand and improve to meet the demands of growing student populations. HEIs globally have to respond to the challenge of reducing the ecological footprint of campus operations through campus sustainability advocacy. However, Alshuwaikhat & Abubakar (2008) mention that universities are ‘small cities’ which have serious direct and indirect impacts have on the environment due to their large population and various complex activities in campus. Higher education institutions generate environmental impacts through both direct and indirect activities, which included those in classrooms, laboratories, office and catering by students and employees. It is important to estimate these environmental impacts in order to identify more sustainable options for reducing their environmental footprints (Lukman et., 2009; Geng, Liu, Xue, & Fujita, 2013).

Furthermore, Savelyeva & Mckenna (2011) stress Sustainability has found its way into all dimensions of academia. Higher education institutions had been considered as essential party for achieving sustainable development. There is no well-defined but a common view that sustainable university campuses refer to a better balance between economics, social and environmental goals in policy forming as well as a long-term perspective on current campus activities. Some researchers and organizations have presented their views towards Sustainable university campuses. Finally, Velazquez et al (2006) , a sustainable university is defined as “a higher educational institution, as a whole of as a part, that addresses, involves and promotes, on a regional or a global level, the minimization of negative environmental economic, societal , and health effects generated in the use of their resources in order to fulfill its functions of teaching, research , outreach and partnership, and stewardship in ways to help society make the transition to sustainable life style.”

The Sustainable University One-stop Shop mentioned a sustainable university project should develop from a systems or holistic perspective, perceiving the campus as a ‘learning laboratory’, a ‘model sustainable community’ or a ‘sustainability life world’ or as a ‘learning organization’ with regard to sustainability. Cole (2003) states a sustainable campus that acts to protect and improve the health and well-being of human and ecosystem. It actively engages the knowledge of the university community to address the ecological and social challenges that we face now and in the future. As sustainable concept is applied to universities, it could be the core value in campuses as well as various activities so that all stakeholders in universities are able to meet their needs and maintain these ideals in a long-run.

2.4 Building Knowledge Community for Higher Education

The terms “knowledge building” and “knowledge creation” has been used interchangeably in different studies (Nonaka, 1991; Nonaka & Takeuchi, 1995; Nonaka & Von Krogh, 2009; Scardamalia, & Bereiter, 2014), but to be précised, knowledge building in the learning sciences, meanwhile, knowledge creation in organizational science.

Although Knowledge Building and knowledge creation refer to the same process, in practice Knowledge Building encompasses a much greater range of
concerns, due in large part to its involvement in issues of learning and human development. These issues are not entirely absent from organizational knowledge management, but they do not have nearly the prominence there that they have in educational Knowledge Building.

2.5 Empirical Studies of Knowledge Building in a Society

There are very few literatures in the recent studies that establish connection between higher educational service qualities, sustainability and knowledge building specially in the Arab world. Among the few studies are Zhang, et al (2011); Scardamalia & Bereiter (2014); Lui, Tissenbaum, Slotta (2011); Hong and Chiu (2016); Yücel and Usluel (2016). A case study by Zhang, et al (2011) conclude satisfactorily that knowledge building contribute a significant role between knowledge building, quality of education student and teacher’s performance. They found that building knowledge contribute significantly in building teachers and staff.

Knowledge Building aims to provide such an environment. While it may seem to be a radically optimistic approach, it is actually quite cautious in making assumptions about what is teachable and what the goals of 21st century education should be. As for the question of what students are actually capable of, the Knowledge Building answer is, “Let’s find out (Scardamalia & Bereiter 2014).

Similarly, Tan and Chan (2008) investigate series of 3I (interdisciplinary, interschool, and international) Project Learning activities with more than 10 000 students and teachers participating globally. They found that Information Communication Technology has a positive connection to knowledge community building.

Conversely, Lui, Tissenbaum, Slotta (2011) adopt co-design method with sample of high school teachers to create a curriculum activities for math and physics study findings on a new program of research on collaborative learning in smart classrooms. Their result showed improvements in problem-solving (in the second study), as well as improved tagging proximity to an expert model.

However, Hong and Chiu (2016) use students’ data from online interaction logs, groups, inquiry and group discussion to investigate the role of ideas for knowledge work and relationship to students’ inquiry activities. They found that knowledge building was significant to preparing for real world situation viz ability to create and improve ideas, and creative knowledge work, rather than a mere abstract knowledge which is not sufficient to strive in the competitive world.

Additionally, Yücel and Usluel (2016) use the sample of 145 lecturers to investigate the connection between processes of knowledge building, the interaction and participation of students in an online collaborative learning environment. They found that online course with combined knowledge building environment improve students’ ability in opinion building and expression, content and quality of interaction and participation, and thus the learning of students. In view of these above studies, there is no consistency in the findings of these scholars as some settled for direct relationship and others considered it to be negative.

3. METHODOLOGY

3.1 Theoretical framework

The present study was conducted in 3 private universities of UAE. We followed Stahl (2006) group cognition requires a theory of collaboration that takes the group as the unit of analysis rather than the individual. Knowledge Building is a group phenomenon, even when contributions come from identifiable individuals. It is the production of public knowledge of value to a community (Scardamalia & Bereiter, 2003). In Addition, Gold et al (2001) have identified acquisition of knowledge, securing knowledge, knowledge
application and knowledge conversation as the four dimensions of knowledge management. However, Lawson modifies the model in 2003 with inclusion of knowledge creation, storing and capturing. In light of this model, we present our model for knowledge building as follows:

University Knowledge Building Construct, $X_1 = \text{Creating Knowledge}$, $X_2 = \text{Storing Knowledge}$, $X_3 = \text{Capturing Knowledge}$, $X_4 = \text{Faculty Resources and Infrastructure}$, $X_5 = \text{Knowledge Sharing}$ and β_0, β_1, β_2, β_3, β_4, β_5 are coefficients for the independent variables respectively. We determine which independent variable has the greatest effect on dependent variables using standard coefficients. We followed 5 per cent to determine the significant of the hypothesis. H0: There is not a linear relation between knowledge buildings determines and knowledge building construct.

H1: There is a linear relation between knowledge buildings determines and knowledge building construct.

3.4 Data Analysis Procedures

The study employed SPSS version 13 ‘Statistical Package for Social Science’ software and PLS 3. The study also tested reliability of the instrument using SPSS so that it enables to produce a robust and valid result. Also, correlation, descriptive statistics of respondents, descriptive statistics of the variables and Reliability test of the Study. However, the hypothesis testing for the latent variables were done using PLS 3.

4.0 FINDINGS AND DISCUSSIONS

This research investigated the role of private universities in building knowledge society in UAE using quantitative approach. We used 5 instruments such as creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing to establish the relationship on the impact of private institution and building knowledge community in UAE. Results identified that creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing are significant variables in determining building knowledge community in UAE. Findings are consistent with the studies accomplished by Kordshouli et al. (2016), Ferdousipour (2016), Azizi et al. (2014), Ali and Mohamed (2014), Shah (2013), Enayati et al. (2013), Rahim (2012), and Dado et al. (2012).

The table 4.1 above established that there is a low association among the independent variables. Knowledge creation, storing knowledge, capturing knowledge, availability of infrastructures, and sharing knowledge which indicate that model is free from multicollinearity. We have the validity to proceed for further investigation in determining the relationship run from independent variables and dependent variable. This is line with the finding of Karpov (2016) one of the key problems of the knowledge society development is provision of solid education for young people in order to contribute positively to its socio-economic and cultural growth.

In Table above, it illustrates the summary of the respondents of the research in term of nature of their job, 23 of 30 staffs are working on full time basis which represent about 76.7 per cent and 7 (23.3 per cent) are part time staffs. In term of gender, 18 respondents were males and 12 are female. Meanwhile, 4 have Bachelor degree, 7 faculty members have Masters and the remaining 19 are PhD holder which indicate that, our sample have shown correlation of private institution and knowledge building in UAE due to the fact that more the PhD holders among their staffs, the more fit or ready are the private universities in assisting the community in knowledge building. Furthermore, 20 of their staffs are university lecturers representing about 66.7 per cent, 7 are admin Staffs exactly 23.3 per cent and 3
are technical staffs which is 10 per cent of the staffs. Finally, respondents with below ten years’ experience are 13, the staffs with 11 to 20 years are 8 while 20 above are 9 representing 43.3, 26.7 and 30 per cent respectively.

Designation and Teaching Experience. Section B: relate to different aspects of your institution and your experiences relating teaching and knowledge building in UAE. Use the rating scale below to express the degree to which you agree or disagree with them. Instrument used in this research is adapted from Parasuraman et al. (1990) with some of the items used extracted from Zhang et al. 2011; Bodong, Chen & Scardamalia & Bereiter, 2015; Brailsford, 2016) using the Likert scale from 1 for not satisfied at all to 5 for very satisfied.

In the following a linear equation to present the relationship between determinant of knowing building and knowledge building construct. \[Y_t = \beta_0 + \beta_1 X_1 t + \beta_2 X_2 t + \beta_3 X_3 t + \beta_4 X_4 t + \beta_5 X_5 t + U t . \] Where \(Y_t \) = Private

In table 4.3 above, the mean of the constructs viz Knowledge creation, Storing knowledge, Capturing Knowledge, availability of infrastructures, and sharing knowledge are 3.400, 3.287, 3.260, 3.408, 4.522 and 4.453 respectively. However, the Standard Deviations of the constructs amounted to 0.632, 0.696, 0.568, 0.706, 0.685 and 0.819 respectively.

The instrument’s reliability is the important aspect of the research process. According to Murphy and Balzer (1989) argued that 0.70 is considered suitable for the coefficients of Cronbach in order to be considered reliable. However, Nunnally (1978), supports 0.6 as acceptable value to make decision for reliability. In Table D above the values of alpha values for the construct are above 0.6 so we have the validity to consider our instruments reliable.

In order to investigate the impact of private universities in building knowledge community in UAE using the 5 instruments designed vis a vis creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing. We found that all the 5 instruments support knowledge building in the study area. As 0.007 is less than 5 per cent for Capturing Knowledge Ho is rejected and H1 is accepted and therefore Knowledge capturing is a significant variable in explaining Knowledge building in UAE. It contributes 13 percent on knowledge building a sound policy is advice to be targeted on it. In term of Knowledge Creation, 0.001 is significant at 5 per cent and also Faculty Resources and Infrastructure showed a positive relationship to building knowledge process in UAE at 5 per cent significant level 0.044. This evinced that creating a culture of knowledge sharing, acquiring appropriate hardware and software, building information and communications infrastructure and developing human resources is imperative for building knowledge community. We suggest that a growing recognition of ‘knowledge’ as the furthestmost main ingredient of social improvement and support by the government would go a long in assisting the country to diversify UAE economy from popular oil economy to knowledge economy which provide additional source of revenue for the government. Furthermore, Storing Knowledge and Sharing Knowledge also explained knowledge community building process due to their significance at 5 per cent with the P value of 0.054 and 0.039 respectively. We concluded that all the determinants of knowledge buildings support H1 meaning that, there is a linear relation between knowledge buildings determines and knowledge building construct in UAE. The f-statistic is significant which indicate that all the variables are significant in explaining
sustainability of higher education in building knowledge community in UAE.
No serial correlation in the model specified. Our study is in support of the findings of Allameh and Zare (2011) Allameh and Zare 2011; Hong, 2011; Hong, Chen, Chai, & Chan, 2011; Ferdousipour 2016; Kordshouli et al. 2016; Oshima et al., 2012; Mohamed, 2014; Zhang et al., 2009)

5.0 CONCLUSION

This study focused on the role of private universities in building the knowledge society in the United Arab Emirates through the use of 5 instruments such as Creating Knowledge, Storing Knowledge, Capturing Knowledge, Faculty Resources and Infrastructure and Knowledge Sharing. Conclusively, we established that the association between creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing are positively strengthen sustainability of higher education to build knowledge community in the UAE. Creating knowledge, storing knowledge, capturing knowledge, faculty resources and infrastructure and knowledge sharing are significant variables in explaining building knowledge community in UAE due to their positive interconnectivity.

Even though we tried to retrieve data from all the private universities in UAE because of logistics and financial restrictions, the research is limited to only 3 private universities.

We suggest that education sector managers should extend the quality enhancement scope to student satisfaction because satisfaction of student is highly essential in sustaining private universities to compete within and outside the system since part of the objectives of knowledge economy is to provide a quality educational services that will arrest the attention of students residing in UAE and abroad. HEIs should improve overall service for a long-term revenue generation. To meet the international standards of education, special attention is required to upgrade infrastructure and other allied facilities, as well as to improve the communication skills of the students, to establish efficient quality enhancement cells and job placement cells, and to arrange industrial visits and study tours to enhance practical skills of the students.

This research has been conducted on much wider scale but it only measures the perceptions of the lecturers. Further studies can be done to explore the perception of other stakeholders including the students and parents. This study is a cross-sectional survey. In future, a longitudinal investigation approach will offer a foundation for more valuable clarifications and explanations.

Future researchers should advance inspection of the impact of quality service and marketing on sustainability of higher education in building knowledge community and to cover other universities for more robust result.

REFERENCES

Schiliro, D. (2013). Diversification and development of the UAE’s economy

for global collaborative project learning. Proceedings of the IEEE, 96(6), 1049-1061.

3.2 Sample

The samples in this study utilized the faculty members of three private universities. We used questionnaires to collect data from private universities to investigate their roles in building knowledge society in United Arabs Emirates. Respondent consists of faculty members of three selected private universities. We have distributed 30 questionnaires to all the three institutions. Finally, 30 respondents completed and returned the questionnaires, which represents about 100% response rate.

3.3 Instrumentation

This study used questionnaire as a medium to obtain the data needed. There are three sections in the questionnaire, consisting of Section A: Demographic factors: Gender, Qualification/Education Level,

Independent Variables

- Creating Knowledge (CK)
- Storing Knowledge (SK)
- Capturing Knowledge (CAP)
- Faculty Resources and Infrastructure (FRI)
- Knowledge Sharing (KS)
- Private University Knowledge Building (PUK)

Dependent Variable

- Sustainability & Knowledge Community

Figure 2.1: The Framework of the study

Table 3.1 Data Coding

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private University Knowledge Building</td>
<td>PUK</td>
</tr>
<tr>
<td>Creating Knowledge</td>
<td>CK</td>
</tr>
<tr>
<td>Storing Knowledge</td>
<td>SK</td>
</tr>
<tr>
<td>Capturing Knowledge</td>
<td>CAP</td>
</tr>
<tr>
<td>Faculty Resources and Infrastructure</td>
<td>FRI</td>
</tr>
<tr>
<td>Knowledge Sharing</td>
<td>KS</td>
</tr>
</tbody>
</table>

Source: Researcher

Table 4.1 Pearson Correlation Analysis of the Variables

<table>
<thead>
<tr>
<th>Latent Variables</th>
<th>CK</th>
<th>SK</th>
<th>CAP</th>
<th>FRI</th>
<th>KR</th>
<th>PUK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>.387*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP</td>
<td>.687**</td>
<td>.345</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI</td>
<td>.442*</td>
<td>.369*</td>
<td>.504**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS</td>
<td>.277</td>
<td>.298</td>
<td>.364*</td>
<td>.574**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PUK</td>
<td>.670**</td>
<td>.721**</td>
<td>.429*</td>
<td>.518**</td>
<td>.352</td>
<td>1</td>
</tr>
</tbody>
</table>

*P ≤ 0.01 level (2-tailed); *P ≤ 0.05 (2-tailed)

Table 4.2 Summary of the Respondents’ Demography

<table>
<thead>
<tr>
<th>S/N</th>
<th>Items</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
</table>

202
1. **Program**
 - Full Time: 23 (76.7%)
 - Part Time: 7 (23.3%)

2. **Gender**
 - Male: 18 (60%)
 - Female: 12 (40%)

3. **Educational Level**
 - B.Sc.: 4 (13.3%)
 - M.Sc.: 7 (23.3%)
 - Ph.D.: 19 (63.3%)

4. **Designation**
 - Lecturing: 20 (66.7%)
 - Admin Staff: 7 (23.3%)
 - Technical Support: 3 (10%)

5. **Teaching Experience**
 - Below 10 yrs: 13 (43.3%)
 - 11 - 20 yrs: 8 (26.7%)
 - 21 - 30 yrs: 9 (30%)

Source: Researcher

Table 4.3 Descriptive Statistics of the Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUK</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>3.400</td>
<td>.632</td>
</tr>
<tr>
<td>CK</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>3.287</td>
<td>.696</td>
</tr>
<tr>
<td>SK</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>3.260</td>
<td>.568</td>
</tr>
<tr>
<td>CAP</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>3.408</td>
<td>.706</td>
</tr>
<tr>
<td>FRI</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>4.522</td>
<td>.685</td>
</tr>
<tr>
<td>KS</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>4.453</td>
<td>.819</td>
</tr>
</tbody>
</table>

Source: Researcher
Table 4.4 Reliability test of the Study

<table>
<thead>
<tr>
<th>S/N</th>
<th>Variables</th>
<th>No of Items</th>
<th>Cronbach’s Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PUK</td>
<td>5</td>
<td>0.782</td>
</tr>
<tr>
<td>2.</td>
<td>CK</td>
<td>4</td>
<td>0.769</td>
</tr>
<tr>
<td>3.</td>
<td>SK</td>
<td>6</td>
<td>0.811</td>
</tr>
<tr>
<td>4.</td>
<td>CAP</td>
<td>5</td>
<td>0.883</td>
</tr>
<tr>
<td>5.</td>
<td>FRI</td>
<td>3</td>
<td>0.700</td>
</tr>
<tr>
<td>6.</td>
<td>KS</td>
<td>3</td>
<td>0.697</td>
</tr>
</tbody>
</table>

Source: Researcher

Table 4.5 Hypothesis Testing for the Latent Variable

<table>
<thead>
<tr>
<th>Hyp.</th>
<th>Relationship</th>
<th>Beta</th>
<th>S.Error</th>
<th>T – value</th>
<th>P – value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CAP -> PUK</td>
<td>0.128</td>
<td>0.030</td>
<td>4.217</td>
<td>0.007</td>
<td>Supported</td>
</tr>
<tr>
<td>H2</td>
<td>CK -> PUK</td>
<td>0.501</td>
<td>0.143</td>
<td>3.505</td>
<td>0.001</td>
<td>Supported</td>
</tr>
<tr>
<td>H3</td>
<td>FRI -> PUK</td>
<td>0.157</td>
<td>0.039</td>
<td>3.871</td>
<td>0.044</td>
<td>Supported</td>
</tr>
<tr>
<td>H4</td>
<td>KS -> PUK</td>
<td>0.345</td>
<td>0.044</td>
<td>7.841</td>
<td>0.054</td>
<td>Supported</td>
</tr>
<tr>
<td>H5</td>
<td>SK -> PUK</td>
<td>0.319</td>
<td>0.078</td>
<td>4.089</td>
<td>0.039</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Adjusted R Square: 0.58
Durbin-Watson: 2.009
F-test: 16.348
F-Prob.: 0.000

Source: Researcher
Appendix